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Abstract —Nonlinear constitutive equations for an elastically isotropic elastic-viscoplastic material
have been used to predict the second order effects that cause axtal elongation during pure shear.
normal stresses during simple shear and accumulated axial elongation during cyclic pure shear.
Spevitic attention has been focused on the determination of material constants for OFE copper and
70:30 x brass by matching the stress -strain curve for large deformation torsion and the second order
cifect of axial clongation observed during torsion without axial constraint. The results of this paper
indicate that second order effects in the plastic region are driven by second order elastic effects that
cause small terms to appear in the flow rule which continue to influence the accumulation of plastic
deformation. These second order elastic effects are mainly controlled by a single material constant
C, that can be determined by experimentation.

1. INTRODUCTION

Poynting (1909) studied sccond order effects in the elastic range by considering torsion of
solid wires with and without axial constraint. From his experiments Poynting concluded
that axial clongation occurs under torsion without axial constraint and axial compressive
stresses are created under torsion with axial constratnt. Later, Switt (1947) showed that
this clongation persists in the plastic range and that upon load reversal the clongation
decreases slightly ¢ven while reverse plastic loading occurs and then continues to inerease
causing a net increase in length. Freudenthal and Ronay (1966) exploited the fact that
clongation persists in the plastic range and studied the accumulated increase in length
caused by a large number ol torsional cycles of small amplitude. All of these cllects
are termed second order effects because they are absent in solutions based on the small
deformation theory.

Recently, Harren et ¢f. (1989) have reviewed a number of both phenomenologicul and
crystal plasticity analyses of the Swilt effect. In their review Harren er af. (1989) also
analysed the Swift effect mainly using a rate-dependent model for polyerystals that includes
detailed etfects of texture evolution. Although their prediction of the magnitude of the Swilt
effect is significantly exaggerated they are able to qualitatively predict the decrease in
clongation during reverse plastic loading observed by Swift (1947), which is an effect
attributed to texture evolution.

The objective of this paper is to develop specific simple constitutive equations for large
deformation ol elastic -viscoplastic metals which can be used to model these second order
effects. These specilic constitutive equations represent a synthesis of developments over the
last tew years. The general theory for clastic-viscoplastic materials (Rubin, 1986) has been
developed using the kinematics suggested by Green and Naghdi (1965, 1966) for large
deformation of elastic-plastic materials and is consistent with the thermodynamic pro-
cedures proposed more recently by them (Green and Naghdi, 1977, 1978). The specific
cquations model an elastically isotropic clastic-viscoplastic metal and do not model texture
cffects. Viscoplasticity is introduced in these equations by modifying the flow rule for plastic
deformation and the hardening cquations starting with the work by Bodner and Partom
(1972, 1975) and Bodner (1985). The resulting equations for viscoplasticity are specific
examples of equations associated with a unificd theory without a yield surface [e.g. Bodner

t Formerly named R. Chen.
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(1987)]. The functional forms of the equations have been developed to model high com-
pression caused by shock waves (Rubin. 19874, 1990) and the equations also model very
large shearing because the theory exhibits a continuity of solid and fluid states (Rubin,
1987b). Another important feature of these equations is that they use kinematics which
separate the effect of elastic dilatution {volume change) from that of clastic distortion. This
separation, which is used here for an elastic-plastic response was introduced by Flory
(1961) for elastic response. More specifically, the distortional strain energy depends on the
dilatation and on two scalar measures of pure elastic distortion proposed by Rubin (1987b)
and denoted by f,. f.. These scalars B,. ff, are the two independent invariants of the inverse
C.7 ' of the unimodular tensor C. characterizing the elastic distortion discussed by Rubin
and Chen (1991).

The elastic response exhibited by these specitic constitutive equations is characterized
by five independent material constants:

{]\’(}.‘ﬂg);. :.\‘;‘HIP.C:E. (Ia‘b)

The first two constants (1a) are associated with first order effects and can be determined
by the small deformation theory. Specifically, Ky is the reference value of the bulk modulus
and g, is the reference value of the shear modulus. The remaining three constants (1b) are
assoctated with sccond order effects which cannot be determined by the small deformation
theory. Specifically, 5, characterizes the nonlincar dependence of pressure on dilatation
{volume change): m, characterizes the dependence of the shear modulus on dilatation
paramctrically through a part of the pressure s and C; controls higher order effects of elastic
distortion in the distortional struin encrgy.

It will be shown that the values of the second order constants (1b) do not significantly
influcnce the first order response. Consequently, the procedures for determining the first
and second order constants are uncoupled. In particulur, values for the first order constants
(1a) can be determined by acoustic bulk and shear wave speeds, and values for the sceond
order constants can be determined by matching second order effects direetly. Alternatively,
1t has been shown (Rubin, 1990) that the five ¢lastic constants (1) are determined in terms
of the more common constants assoctated with a Taylor series expansion of the strain
cnergy including third order terms. Furthermore, this uncoupling of first and second order
constants should be contrusted with other work [e.g. Imvand Aduri (1987), Figs 6, 7] where
the material constant that controls the second order response of axial clongation also
influences the first order response of shear stress versus shear strain.,

Here, the values for s, m,, are determined by shock wave data. Although the constant
C, can in principle be determined by an elastic experiment, nonlinearitics in the elastic
response are usuaily diflicult to measure for metals in which the elastic strain remains
very small. However, since here we show that the value of Cy significantly influences the
accumulated value of axial elongation during torsion into the plastic region it is more
convenient to determine the value of Cs by matching the value of clongation measured by
Swift (1947).

For definitencss, tet (7,. T T, T,.. T... T,.} be the independent (apart from
symmetry) physical components of the Cauchy stress T referred to the orthonormal base
vectors {e,. ¢, ¢.} assoctated with a cylindrical polar coordinate system. In the study of
constitutive properties of materials it has become common to perform torsion experiments
on thin hollow tubes. It the tubes are extremely thin then the deformation can be approxi-
mated as homogencous and the experimental results can be casily interpreted. Unfor-
tunately. in order to aveoid buckling in a finite deformation torsion experiment on a hollow
tube, it is necessary to make the thickness of the tube be at least 10-15% of the mean
radius. Therefore, these hollow tubes cannot really be considered to be thin and the
deformation is not really homogencous. In spite of this fact, if one is only interested in first
order effects, then torsional experiments on these hollow tubes with no axial constraint can
be considered to create relatively homogeneous deformation and a state of pure shear in
which the only nonzero independent component of the Cauchy stress is T,.. However, it is
important to emphasize thatif one is interested in second order effects such as the elongation
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caused by pure torsion, then the inhomogeneity of the deformation in even thin hollow
tubes is itself a second order effect that can significantly influence other second order effects
of interest.

More specifically, we note that since the amount of shear in a torsion experiment
increases with increasing radius, the axial elongation also tends to increase with increasing
radius. This effect tends to cause the shear stress T,. to develop. Also, by thinking of the
thin tube as a collection of thinner concentric tubes we can expect that the second order
effect of this variation of shear would tend to cause changes in the radii of the concentric
tubes. However, since these concentric tubes are kinematically coupled. the variation of
shear tends to cause nonzero stress components 7,, and 7, to develop. As mentioned above,
these complicating features are all second order effects that can significantly influence the
measurement of other second order effects. In particular, Swift (1947) observed that hollow
tubes (of 70:30 x brass) under torsion with no axial constraint tend to extend about 50%
further than solid bars under the same loading. Ronay (1968) observed that this difference
is even more pronounced on the accumulated elongation due to small amplitude cyclic
torsional loading. For the smaller torsion angles (<3") the elongations of hollow tubes
were as much as eight times those of the solid bars, whereas for the larger torsion angles
(= 30) the clongations of hollow tubes were nearly the same as for solid bars. Freudenthal
and Ronay (1966) also observed that even a small axial tension can significantly increase
the accumulated clongation due to cyclic torsional loading, It is therefore reasonable to
assume that the radial constraint associated with grasping the ends of a hollow tube may
also influence the measurement of sccond order effects. Thus, torsion of solid bars or even
hollow tubes that are thick enough not to buckle cannot provide clean experimental data
for determining sccond order effects in the constitutive response.

Since accurate machining of thin hollow tubes is relatively difficult, most of the experi-
ments performed by Swift (1947) and Freudenthal and Ronay (1966) were performed on
solid bars. In view of the complications discussed above, a complete analysis of sccond
order effects in a solid bur would require implementing the proposed model in an appropriate
large deformation computer code and numerically solving the inhomogencous problem.
This approach was taken by Lipkin er «f. (1988) using a different set of constitutive
equations than those proposed here.

Instead of programing these constitutive equations in a large deformation computer
program to obtain accurate quantitative comparison with experimental data, the usual
procedure of considering the simpler homogencous problem of pure shear in a rectangular
Curtesian coordinate system is followed, even though at this time we cannot quantitatively
assess the error in this procedure. More specifically, let 7,, (/ = 1,2, 3) be the components
of the Cauchy stress referred to a rectangular Cartesian coordinate system with the
orthonormal base vectors {e e, e,}. In this paper pure shear in the ¢,-e, plane is considered,
with the only nonzero independent component of stress betng 7. First order cor-
respondence with the physical experiment can be obtained by identifying the Cartesian
directions {e,, e,, e;} with the cylindrical polar directions {e,. e.,e,!.

The following analysis shows that the value of C, significantly influences the elongation
in the e, direction caused by shear in the e;-e, plance and can therefore be determined by
measurements of elongation in a clean experiment. In this paper a value of C, is determined
for 70:30 z brass by quantitatively matching theoretical predictions with the elongation
measurcd by Swift (1947) in an cxperiment on a hollow tube, Also, a value of C, is
determined for copper by matching a pscudo experimental curve of elongation in a hollow
tube which was obtained using the approximation discussed by Swift (1947) which increases
the clongation measured for a solid bar by 50%.

Although texture development duc to large plastic deformation significantly influences
the magnitude of axial elongation for very large shear strains, it is shown here that for
moderate strains this axial elongation can be modelled by a theory that does not include
texture development. The nonrecoverable nature of axial elongation during torsion into the
plastic region is of course due to the plastic response. However, it should be emphasized
that the results of this paper indicate that second order effects in the plastic region are
driven by second order elastic effects that cause small terms to appear in the flow rule which
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continue to influence the accumulation of plastic deformation. These second order effects
are mainly controlled by the elastic constant C,. In this regard it is important that the
constitutive equations used to model axial elongation be of the hyperelastic type (for which
a strain encrgy function exists) so that they properly model nonlinear elastic response.
Furthermore. we mention that for convenience, the present analysis uses a viscoplastic
theory without a vicld surface. However, the major results obtained here could also be
obtained using a rate-independent theory of plasticity with a yield surface developed by
modifying the flow rule (Rubin, 1989).

In the tollowing sections we review the basic constitutive equations and discuss results
for small clastic distortions and the formulation for pure shear. Next, it is shown how to
determine the first order material constants characterizing elastic and plastic response. Then
the procedure for determining the second order elastic constants is presented. Additional
simulations of simple shear and the accumulated axial elongation due to cyclic torsional
loading without axial constraint are presented. and a conclusion section ts included to
summarize the main results. Furthermore, for the convenience of the reader a number of
detailed mathematical developments are included in four appendices.

2. BASIC CONSTITUTIVE EQUATIONS

In this scction we briefly recall constitutive equations for the purely mechanical
response of an clastically isotropic clastic -viscoplastic material. These constitutive equations
were used by Chen (1990) 10 study second order effects and they may be obtained by
spectalizing the equations used by Rubin (1990) for viscoplasticity in 6061-T6 aluminum.

For background information, let X denote the position of a material point in the
refercnce confizuration and x denote the position of the same material point in the present
conliguration at time . Also, let F = éx/@X be the deformation gradient, C = F'F be the
total deformation, €, be a symmetric positive definite tensor denoting the plastic defor-
mation and S be the symmetric Piola Kirchhoft stress. For the purely mechanical theory
the temperature s assumed to remain equal to its reference value 0, and the expression
for the specilic (per unit mass) Helmhboltz free energy  given in Rubin (1990) reduces to

'// :l/’l(l\)*’—'l/'([h/;h/i:)‘ 2[’(]‘l/| =j.:(1\). (2Ll,h)
pap = fCHB =D+ C( =3 Ci+4C = 1, (2e,d)
207 = UL =4CHB =N+ Co(B2 =) (2¢)

where py, is the mass density in the reference configuration, /4 is a pure measure of dilatation
and ;. . are purc measures of clastic distortional deformation defined in Rubin
(1987b) by

/flz(ll"> (C '-C,). By = ( ) (C,C'-C'Cy), (3a.b)
C,

I, =detC. I, = det (3e.d)

In (3) and throughout the text the notation A*B = tr (AB") denotes the inner product
between two second order tensors. The term ¢, represents the free energy due to purely
hydrostatic loading and the term i represents the free energy due to elastic distortion. The
function 4 is related to the effective shear modulus p by the formula (Rubin, 1987a):

wily) = I :ll(l\)- 4
and (3d) represents the condition of plastic incompressibility. The constants €y and C» in

(2¢) control the influences of the measures of elastic distortion f, and f},, respectively.
Furthermore. ff, and fi, are exact measures which have not been approximated using a
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Taylor series expansion so the terms (8, —3) and (8, — 3) are not purely quadratic in strain
and each one of them influences both first and second order elastic response. Consequently.,
to ensure that for small elastic distortions the shear modulus attains the value y,. the
constants C, and C. must be dependent and satisfy the restriction (2d) [see Rubin (1987b)].
For convenience we solve (2d) for C, and substitute the result into (2¢) to obtain (2e). It
follows that C, in (2e) is a second order material constant because it does not influence first
order effects. Later, it will be shown that C, in (2e) controls the Swift effect (Chen. 1990).

For the class of constitutive equations considered here it can be shown (Rubin, 1987a)
using the procedures proposed by Green and Naghdi (1977, 1978) that the stress S and a
part ¢’ of the internal rate of production of entropy related to plastic dissipation may be
expressed in terms of derivatives of the Helmholtz free energy. Specifically, for the purely
mechanical theory equations (4a-e. 1) in Rubin (1990) reduce to

.
S =2p, (%) = —pli*C ' +8, p=p(L3)+p L. By B> (5a.b)

- df: 4 dﬂ)
= —n:Y fe =1 SN (1 =4 (B =D+ Co(B= ). (5.
& 1y (d[;)‘ r 1 (dl, [(1—=4CH(B,=3)+C(B.—-H].  (5¢c.d)

S = ~(1-4C)HIVHC'CC ' = {C ' - C)C '] -2C, 1 pC'C,C'C.C !
—{C,C ' C'C)C Y. (Se)

) i ,
pollE = —py (;g)-cp = “Bla—acyric v, C ', C G, (5
; 2

In (5). the total pressure p is composed of a part p, dependent on dilatation only and a part
p’ dependent on dilatation and clastic distortion. Also, a superposed dot denotes material
time differentiation holding X fixed and the Cauchy stress T and its deviatoric part T are
given by

T=—pl+T", T =1 FSF", (6a.b)

where 1is the unity tensor.

For high compression applications including thermal effects Rubin (1987a) determined
the function f, by matching a Mie-Gruneisen equation for the pressure p,. Since here we
are conlining our attention to the purely mechanical response it is sufficient to assume that
the pressure p, is equal to the Hugoniot pressure py such that

Ky
o= pully) = -t

(Cagm Ke=pCh (7a.b)

where C, is the bulk wave speed, s, is a constant, and the total compression ¢ is
defined by

b=1-1" 8

Substituting (7a) into (5¢) and requiring the dilatational energy ¥, to vanish in the reference
configuration [i.e. (1) = 0] it follows that

/‘(1)—5'3[*»'——4! (1-5, 1] 9
) = sf ) n sih)—11. )

In addition, the effective shear modulus p in (4) is determined by the expression

SAS 29:18-C
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uls) = pol(1 = C)IT ' 2+ C(1+my L5 °p )] (10)

For convenience we have introduced C, to distinguish between the two cases when C, takes
the values zero and unity. When C, vanishes, ji in (4) equals the constant value y,; the part
¢’ of the Helmholtz free energy depends only on elastic distortion: and the pressure p
depends only on the dilatation I, [p" = 0]. Alternatively, when C, equals unity, the depen-
dence of u on pressure is controlled by the constant m,. 4 in (4) depends on dilatation, the
distortional part ¢’ of the Helmholtz free energy also depends on dilatation, and the
pressure includes a term p” which depends on elastic distortion. Furthermore, when C,
equals unity the expression (10) reduces to a form similar to the one proposed by Steinberg
et al. (1980) when the temperature dependence of u is neglected.

The equations (2}-(10) determine the elastic response. The plastic response is char-
acterized by the flow rule (Rubin, 1987b)

3
C, =TA, A=<E:TE>C_C” (11a,b)

which is a constitutive equation for the rate of plastic deformation Cp. and by evolution
equations for the rate of hardening. The specific form of I used here,

Z n
F=ﬂ,cxp[—§<) } (12)
ac

was introduced by Rubin (1987b, with R = 1) as a modificd form of the viscoplastic flow
rule proposed by Bodner and Partom (1972, 1975). In (12) [, and n are constants, o, s the
von Mises stress defined by

T,

[P

T T, (13)

S oha

and Z 1s a measure of hardening that is separated additively into a measure x of isotropic
hardening and a scalar measure f§ of directional hardening such that

Z=xr+p (14)

The scalar f is related to the tensorial measure B of directional hardening by the formulae

A
—C-'g-uc-! o 15a,b
[f CP ﬁ UCP i U (Cp— lA . ACP— l)lj- ( a )
and the evolution equations for x and g are specified by
k:nll(p(){)':’)(zl‘_’\.)‘ B=’n3(/’0()i,)(Z3U'—ﬁ)- (l6dvb)

In (16) the constant Z, denotes the saturated value of x, and the constant Z, denotes the
saturated value of . For background information, we note that the directional hardening
tensor B was introduced by Bodner (1985) to model the Bauschinger effect and is an
alternative to kinematic hardening. However, the definitions (15a, b) are modified versions
of the ones used by Bodner (1985).

The differential equations (11a). (16a.b) determine the values of C,, x. § and may be
integrated subject to initial conditions. Here we assume that in the reference configuration
C,, x, B are given by
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C =1L K = K, =0 (17a,b,¢)

where x4 ts a constant.
The quantities m, and m, in (16a,b) control the rate of hardening and are usually
taken to be constants (Bodner, 1985). However, in order to more closely model the nonlinear

hardening exhibited by some metals like copper we assume here that m. is constant but
that m, is a function of x of the form

m (k) = mb+ (ma—mb) exp [—mc(k —x,)]. (18)

where ma, mb, mc are non-negative constants. It follows from (18) that m, decreases from
the value ma towards the value mb as the material hardens and « increases. This has the
desired effect of slowing down the rate at which x approaches its saturated value.

3. SMALL ELASTIC DISTORTION

In this section we develop certain useful formulae that are valid for small elastic
distortion. To this end, it is desirable to define a measure B, of elastic deformation, a
measure B; of elastic distortional deformation, and a measure g; of elastic distortional strain
such that

~ 173
B. =FC, 'FT, B. = (—‘«) B.. det B, = 1, g = 1-B ")
(19a,b, ¢, d)

Then with the help of (3d), (4), (5¢), (6b) and (19) we may rewrite the deviatoric Cauchy
stress T in the forms:

T = ~pl(1-4C,){B, "'~ {(B™' DI} +2C,{B 2 =~ (B, - DL, (20a)
T = 2uf{ec - Y(go - DI} —4C{g* — 32 - DI}). (20b)

For small elastic distortion the strain g; is assumed to be a small quantity of order ¢
[denoted by O(e), with 0 < £ « 1] so that

B, = 1+ 0(¢), C, = C'+0(). (21a,b)
where C” is the distortional part of C defined by
C =1;'"°C, detC = 1. (22a,b)

Therefore, with the help of results in Appendix A, it follows from (20b) and (A3) that for
small elastic distortion

T ~ 2ug.. (23)

Since the flow rule (11} is consistent with the assumption that plastic deformation is
incompressible (3d) it may be shown that

Ly =1,C;'-C, =0. (24)

Thus, using (5¢) and (24) the rate of plastic dissipation (5f) may be rewritten in the form:
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P03 = C;'CS - \C,. (25)

Alternatively, we may solve (6b) for §’, substitute the result into (25) and use the definition
(19b) to obtain the expression

pobE” = 1B WF TEF ), (26)

where F' T denotes the transpose of the inverse of F and the distortional part F of the
deformation gradient is defined (Flory, 1961) by

F = [;'°F, detF' = I. (27a.b)

Then, with the help of (13). (21a) and (B7) of Appendix B the rate of plastic dissipation
(26) may be approximated by

polE = IV 0 é,. (28)
wherc the equivalent plastic strain rate &, is defined by (B4).

4. PURE AND SIMPLE SHEAR

Letting X, and x, be the Cartesian components of X and x. respectively, the homo-
gencous total deformation associated with cither pure or simple shear in the ¢,-¢, plance
may be expressed in the form

Xy =a(X, +7.X0), x, =hX,, Xy =Xy, (29a,b,¢)
where a, b, ¢ are quantitics to be determined for pure shear and specified for simple shear

and y is a measure of shear (see Fig. 1). Using (3¢) and (29) the Cartesian components F,
of F, C,; of C, and the dilatation I, become

a ay 0 a’ a’y 0
F={0 b5 0]}, C=lda*y P +a’y1 0. I, = (abc)*.  (30a,b.¢)
0 0 ¢ 0 0 ¢’

With reference to torsion of a thin hollow tube of mean radius r, height A, thickness w
in the present configuration, the quantitics a, b, ¢ may be approximated by

lae‘

Fig. 1. Pure shear of an clement.
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Tt i 3la,b
a= =g ‘=u (3la,b,c)
where R, H, W are the reference values of r, h, w, respectively. Furthermore, letting 6
denote the relative torsion angle between the ends of the tube, and ¢ denote the shear angle
(see Fig. 1), the shear measure 7 is determined by the equations

a rf aRf _RB

= =N T H

(32a,b)
Consequently, each of the quantities a. b, ¢, y may be approximated by experimentally
observable quantities.

With the help of (17a) and (30) it may be shown that the flow rule (11) permits the
plastic deformation to be expressed in the form:

a; aiv, 0
C, = @y, bit+azy, 0 ' (33)
l
0 0 —573
ay by

where a,,, b,,, v, are quantitics determined in terms of the specified motion y(¢) by integrating
the three independent scalar equations associated with the flow rule (11) subject to the
initial condition (17a). Then (19a), (30a) and (33) may be used to obtain

[ . ]

a;
—{*), 0
(ah) Ve

1
B = _(z}?;)% prlbotayll 0 1. ye=y-y,  (4b)
|
0 0 s
L (apbpe)”

where 7. is the elastic shear strain. Therefore, with the help of (20) and (34) it follows that
for these deformations

T;] = 0, 3] = 0, (353, b)

are satisfied identically.
For pure shear the quantitics «, b, ¢ are determined by satisfying the conditions

p=0, T, =0, Ty =0, (36a,b,c)

where we note that any two of the components Ty, T32, T3; could have been chosen since
T’ is a deviatoric tensor. Furthermore, it was shown in Rubin and Chen (1991) that general
constitutive equations for an elastically isotropic elastic-viscoplastic material satisfy the

universal relation
B.T = TB, 37)

for all deformations. It follows by multiplying both sides of (20a) by B, ', and using (6a)
and (19b) that an equivalent relationship becomes
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B,'T'=TB.,". (38)
Therefore. for pure shear (38) yields the equivalent expressions
(B ") = (Bo s b'a, =a:[b;+a;}’c:]- (39a,b)

where (34) has been used to obtain (39b).
On the other hand, for simple shear the quantities a. b, ¢ are specified by

a=b=c=1. (30)

and the stresses T, T3, T35, T2 and p are determined as functions of 7. a;,. b,.

It is also of interest to note that for either pure or simple shear and small elastic
distortions the quantities a, b, ¢, a,, b, are either unity or differ from unity by second order
quantities so that with the help of (19), (23). (30c) and (34) the shearing component of
Cauchy stress may be approximated by

T, =T =g 40

5. FIRST ORDER MATERIAL CONSTANTS

In this section we determine values for the material constants that characterize the first
order clastic -viscoplastic response of OFE copper and 70:30 x brass. Although a procedure
has been developed by Chan et «l. (1988) to determine the material constants when m is
constant, their procedure does not apply directly when i, is taken to be a function of w
(sce 18) as is done here.

For convenience, in all of the following figures we identify experimental data with open
circles. Figures 2(a, b) show the theorctical predictions together with the experimental
results of Kocks er al. (1989, Fig. 1) for a large deformation torsion of copper and brass,
respectively, and Fig. 2(¢) shows the theoretical predictions together with the experimental
results of Corten and Elsesser (1952) for brass subjected to small deformation cyclic loading
in simple tension. In these figures the effective stress g, is defined by (13) and the effective
total strain &, is defined by (B2). The material constants used for these simulations are listed
in Tables 1 and 2 and C,, C, are specified by

C, =0, C,=0. (42a,b)

Details of the determination of these material constants will be described in this section
and the next. Furthermore, Kocks ¢r al. (1989, Fig. 1) showed that texture effects cause the
curves of effective stress o, versus effective total strain ¢, to be different for large deformation
tension, compression and torsion experiments. However, the model described in the previous
sections does not include texture effects so these differences cannot be modelied. Conse-
quently, since we are mainly interested in second order effects in torsion we have chosen
the torsion curves in Figs 2(a, b) for determining the material constants.

Representative values for the first order elastic constants (la) were obtained: for
copper using the formula (7b) and data from Swegle and Grady (1985) ; and for brass using
data from Malvern (1969) ; these values are recorded in Table |.

The procedure for determining values for the constants

{To.n}, {ko.Z1,Z3,ma,mb,mc,m;}, (43a,b)

that characterize the viscoplastic response and hardening of the material is more involved
and is considered next. In general the value of n controls the strain-rate sensitivity of the
material, with high sensitivity for low values of n and low sensitivity for high values of n.
The value of n = 7.5 for copper is obtained from Bodner (1987) and indicates that copper
is relatively strain-rate insensitive up to moderate values of strain rate (< 10*s7 Y. Although
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Fig. 2. First order response : simulations and experiments.

Table 1. First order elastic constants

K, (GPa) #o (GPa)
OFE Copper 138.10 47.70
70:30 2 Brass 96.90 36.43

Table 2. First order viscoplastic and hardening constants

OFE Copper 70:30 a Brass

Fo(s™") o’ 10’

n 7.5 7.5

Ko (GPa) 0.044 0.108
Z, (GPa) 0.52 0.675
Z, (GPa) 0.0 0.078
ma (GPa~") 55.1 378
mb (GPa-') 2.21 333
mc (GPa~") 9.3 10.1
m; (GPa~") 0.0 25,000.0
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no value of n for brass was found in the literature we specified n = 7.5 because brass is also
known to be relatively rate insensitive (Kleemola and Ranta-Eskola, 1979) up to moderate
values of strain rate. In any case. since here we are not focusing on the strain-rate sensitivity
of the material response, the specific value of n is relatively unimportant. Furthermore, we
note that the value of 'y mainly controls the strain-rate sensitivity in the high strain-rate
region (>10" s~ '). Also, the response of reasonably strain-rate insensitive materials is
relatively tnsensitive to the value of I’y up to moderate strain rates. Consequently, we
arbitrarily specified Ty = 107 s .

The remaining constants (43b) control hardening and are determined by an iterative
procedure used to match experimental stress—strain curves. This procedure will first be
described for brass because it includes the Bauschinger effect and therefore is representative
of the most general material described by the proposed constitutive equations.

To determine the first order response associated with the torsion experiments of Kocks
et al. (1989) it is sufficient to consider simple shear and use (29), (40). (Bl) and (B2) to
deduce that the equivalent total strain rate &, becomes

2 =17*11/3. (44)

where, for convenience, throughout the rest of the text we use a superposed (*) to denote
values associated with experiments. Similarly, for simple tension it is suflicient to approxi-
mate the deformation as isochoric [h = I/\/a in (C1) of Appendix Cl and use (B1) (B2)
and (C1) to deduce that

EX x |a¥]a?, (43)

where «* denotes the experimental value of «. It follows with the help of (12) and the
approximations (B6) and (B9) that an estimate Z* of the value of Z for points on a stress -
strain curve with a significant plastic deformation rate can be obtained by the formuta

a:r() 1. 2n
Z*>aX| 2In 3t s (40)

where ¢ is the experimental value of the effective stress o, In particular, since the curves
in Figs 2(a, b) represent loading only, the quantity Z* can be expressed as a function of ¢F.

The work of Chan er al. (1988) suggests that for many materials the directional
hardening saturates much faster (smaller levels of plastic stratn) than the isotropic harden-
ing. This suggests that the hardening exhibited in the region BC in Fig. 2(c) is mainly duc
1o directional hardening so that the value of Z§ of Z* at point 8 and the value Z¢ of Z* at
point C in Fig. 2(c) can be used to estimate the initial value x4 of isotropic hardening and
the saturated value Z, of directional hardening by the formulae

Ko x Z8 Zyx ZE-ZE (474, b)

Once an estimate of 7, is specified, approximate values k* of x can be determined for
the large deformation torsion experiment in Fig. 2(b) by using (46) and the formula

K*x Z*—Z,, (48)

which assumes that directional hardening has saturated. This formula is used for the region
in which x* is greater than or cqual to the value k, given by (47a). Then approximate values
m¥(x*) of the function m (k) in (16a) and (18) can be determined by assuming a value for
Z, and using (16a). (48) and (B10) with /, > | to obtain
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z* e 42Z*
B N 49a,
(Z,—w*)eke der ™ (492.b)

mt(k¥) =

where (49b) can be obtained by numerically differentiating the curve Z*(¢f) obtained from
(46) and the experimental data. Values for the constants ma. mb. mc are obtained by
requiring the function (18) to approximate the result (49a). Finally. a value for m, in (16b)
is determined by attempting to match the small strain response in region BC of Fig. 2(c).

It is important to note that even the large deformation torsion experiments in Figs
2(a.b) do not predict a saturated value of flow stress so they do not provide a definite
measure of the value of Z,. For our purposes we specified the value of Z, by extrapolating
the curves of Z* associated with these experiments.

Once estimates of the first order material constants have been determined it is possible
to simulate the experiments by calculating the response to simple shear and cyclic simple
tension using the nonlincar constitutive equations of the previous sections and assuming
that

I
V3
for the experiments. In this regard we recall that since the materials under consideration
are relatively strain-rate insensitive the predictions will be reasonably unaffected if the value

of £ is varicd even by plus or minus an order of magnitude. Consistent with (44) and (50)
we specified

x 10" s ', (50)

e

d=10 's Y, (51)

in simulating simple shear and used egns (30), (33), (34), (40), and the material constants
in Tables 1, 2 and in (42) to solve the ow rule (H) Tor a,. b,. 7, and obtain the stress from
(20). Also, consistent with (50) and the small deformation approximation of (45) [a* = 1]
we specified

|

dg=+ x 10 Yy !, (52)
/
NE

in simulating simple tension, where the sign of @ changes abruptly at the points D and G
in Fig. 2(c) associated with load reversal. Next we used the eqns (Cl), (C3), (C4) in
Appendix C, and the material constants in Tables 1, 2 and in (42) to solve the condition
(C2) for b and the flow rule (11) for a,. b,. Then a value for the stress Ty, was obtained
from (20). Based on the results of these simufations the values of kg, mi,, Z, were slightly
adjusted to obtain better comparison with the experimental data.

The procedure for obtaining the material parameters for copper is simpler than that
for brass because copper does not exhibit a pronounced Bauschinger effect so m» and Z;
vanish and we do not attempt to match experimental data for cyclic simple tension.

The final values of the material constants obtained by this iterative procedure are
summarized in Table 2 and the theoretical predictions (Case ) are compared with the
experimental data in Figs 2(a. b, ¢). These figures suggest that the modcl simulates the large
deformation torsion experiments quite well but that it can only simulate the main features
of the cyclic simple tension experiment on brass. This is because the model necessarily
predicts that the plastic response during unloading and reloading [curve DEFG in Fig. 2(c)]
cannot occur until the stress has crossed the zero axis, whereas the experiment indicates
that plastic response begins at point E in Fig. 2(c). However, the yiclding at points E and
H shown in Fig. 2(c) is gencrally observed to be a transicent effect that persists only for a
few cycles. Consequently, we expect this transient effect to be negligible on the prediction
of the Freudenthal-Ronay effect, which is associated with a large number of cycles.
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Table 3. Second order elastic constants

OFE Copper 70:30 x Brass

5, L4l 131
m, [TPa~ ] 28.0 28.0
o 25 242

Table 4. Definition of Cases [-1V

Case C, C,
I 0 0
I Table 3 0
[t 0 1
v Table 3 1

6. SECOND ORDER MATERIAL CONSTANTS

It remains to determine values for the second order constants (1b). To this end we note
that values for the constants s, and /1, can be obtained by analysing data from plate impact
shock experiments. In particular for copper, a value of s, is recorded by Pugh (1970) and
a value for m; can be obtained from the work by Steinberg et al. (1980) (note that m, = i,/s,
in their notation). Values of these constants were not found in the literature for 70:30 «
brass so for the simulations here we assumed them to be the same as those for copper.
These values are summarized in Table 3.

As mentioned in the introduction, a value for the clastic constant C, was determined
by matching the value of axial clongation measured during torsion into the plastic region
instead of matching results of a purcely elastic experiment. To this end, we simulated pure
shear with a shearing rate specified by (51), using cqns (30), (33), (34) and the material
constants for copper in Tables [, 2, 3 and Case 1V in Table 4, and the values

C,=1{-4,-2,0,4,8,12,...,36}. (53)
Then we solved the conditions (36a,b) and (39b) for a, b, ¢; the flow rule (1) for g, b,
¥p+ and (20) for the component T, of stress.

For convenience in presenting these results we define the clongations £, E,, E, by the
formulae

E =a-1, Ey=b-1, Ey=c—1. (54a,b,c)

Figure 3 shows that the axial elongation £, at a given value of shear y is a linear function
of the value of C,. It is of particular interest to note that axial elongation vanishes for any
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Fig. 3. Axial elongation versus the material constant C, for copper.
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value of shear y when the value of C, = —2 (see Appendix D). Assuming that all the lines
in Fig. 3 pass through C, = —2, it is easy to determine the value of C, required to match
experimental data for axial elongation E, at a given value of shear y by doing a single
simulation of pure shear with C, # —2 to obtain a second point on the line for the given
value of y. Using this procedure we obtained the values of C, given in Table 3.

Figures 4(a. b) show the theoretical predictions using these values of C, together with
the experimental data for copper and brass (Swift, 1947). These results indicate that texture
effects do not influence axial elongation until large deformations even though these texture
effects probably begin (Kocks et al., 1989 Harren er al., 1989) before the theoretical and
experimental curves diverge.

7. ADDITIONAL SIMULATIONS

Having determined values for all the material constants (summarized in Tables 1, 2,
3) it is of interest to examine theoretical predictions for pure shear, simple shear and the
accumulated axial elongation caused by cyclic pure shear. Also. for pure and simple shear
we will examine the specific influence of the dependence of the Helmholtz free energy on
the measure f; of distortional deformation by comparing with the results for C, = 0, and
the influence of the dependence of the shear modulus ¢ on dilatation [, by comparing with
the results for C, = 0. To this end we define Cases [, II, T IV in Table 4.

Figure § shows the predictions of pure shear and Fig. 6 shows the predictions of simple
shear. Firstly, we note from Figs 5(ua,¢) and Figs 6(a.¢) that the first order response is
nearly identical for all of these Cases, which means that cach of these Cases matches the
experimental data in Figs 2(a, b). Furthermore, these results justify our carlier statement
that the material constants that characterize first order response can be determined inde-
pendently of those that characterize sccond order responsce. For pure shear it appears that
the sceond order response is mainly controlled by the constant C, and is nearly unaffected
by the value of C, because the predictions of Cases I and I are nearly equal and the
predictions of Cases II and IV are nearly equal whereas the predictions of Cases | and 11
are quite different. Using the approximations (31) and the definitions (54) it follows from
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Fig. 5. Simulations of pure shear.

Fig. 5 that a hollow tube of copper or brass subjected to pure torsion would be predicted
(Case [V) o increase in fength, increase in mean radius and decrease in thickness, main-
taining ncarly constant volume.

Figure 6 shows that for simple shear the magnitudes of the normal stresses are influ-
enced by both the constants C, and C,. However, by comparing Figs 6(b, c,d) with Figs
6(f. g. h) we may conclude that the value of C, has a strong effect on the normal stresses
because from Table 3 the value of C, is large for copper and small for brass. Also, note
from Fig. 6 that the normal stresses arc about an order of magnitude smaller than the shear
stress, which is consistent with experiments. For example, the maximum value of normal
compressive stress (— T,) in Fig. 6(c) for copper is about 1S MPa which compares to 25
MPa reported by Montheillet ef of. (1984, in their Fig. 5, where compression is plotted as
positive).
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Fig. 6. Simulations of simple shear.

Swift (1947) also observed for torsion without axial constraint that upon load reversal
the axial elongation decreases slightly and then continucs to increase with a net increase in
length. Figure 7 shows the shear stress and axial clongation for pure shear in copper with
the shearing rate specified by

j=+10"7s"", (55)

where the sign of y changes abruptly at points of load reversal. Curve ABC is associated
with no load reversal and curve ABDEF shows the response with load reversal. The portion
of the curve DF in Fig. 7b indicates no significant decrease in axial elongation upon load
reversal. This again indicates a limitation of the present theory which does not model texture
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effects because it was shown by Harren e af. (1989) that the decrease in axial clongation
during the load reversal observed by Swilt (1947) is mainly duc to texture cffects.

Further in this regard Swift (1947) showed that the decrease in axial clongation upon
load reversal disappeared when the material was anncaled at zero stress before application
of the load reversal. To simulate this effect we unloaded the material from point B to D in
Fig. 7 and then reset the value of isotropic hardening x to its initial value k. This simulates
the effect of including thermal recovery of hardening associated with the anncaling process.
Then the loading was continued along either the path DG or DH. Figure 7(b) shows that
the shape of the axial elongation curve after annealing is very similar to the initial portion
of the curve AD, which qualitatively is the same result observed by Swift (1947).

Next, we consider the Freudenthal-Ronay effect of accumulated axial elongation
during small amplitude cyclic torsion with no axial load. Although Freudenthal and Ronay
(1966) performed their experiments on aluminium we cannot match their experiments
directly because we do not have enough experimental data to determine all the material
parameters for aluminium. On the other hand, our material constants for brass have
been verified more than those for copper because they have been determined to match
experimental data for cyclic simple tension [Fig. 2(c)] in addition to large torsion [Fig. 2(b)]
and the Swift effect [Fig. 4(b)]). Furthermore we recall that the only hollow tube used by
Swift was made of brass. Consequently, we have decided to simulate the Freudenthal--
Ronay effect on brass even though experimental data for this effect are not available.

For these simulations we specify the shearing rate by (55). Figure 8 shows the shear
stress and axial elongation as functions of shear y for two amplitudes (v = +£0.01 and
y = +0.03). From Fig. 8(b) we observe that upon load reversal the axial elongation
decreases slightly due to elastic recovery and then continues to increase with a net increase
in length dependent on the amplitude of the cycle. This decreasc in axial elongation due to
elastic recovery should not be confused with the observations of Swift (1947) which persisted
well into the plastic region during reverse loading.

To further examine the influence of amplitude of a cycle and the number of cycles on
axial elongation, let £, be the accumulated axial elongation at the end of any number of
cycles. Figures 9(a. b) show curves of £, as functions of the number of cycles for different
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Fig. 8. Stmulations of cyclic loading : (a) stress-strain; (b) axial clongation.

amplitudes of the cycle, and Fig. 9(c) shows curves of £, as functions of the amplitude of
the cycle for different numbers of cycles. The values of the amplitude 4 in degrees marked
in Figs 9 and 10 arc determined by the relative twist between the ends of the torsion
specimens in the experiments of Freudenthal and Ronay (1966) and may be related to the
amplitude of shear y by the formula

y = +4 (deg) x 1.53 x 10 ~* (rad/deg). (56)

In particulur, note from Fig. 9(a) that if the amplitude is small enough then the accumulated
axial elongation £, saturates when the value of isotropic hardening increases to the point
that the cycle remains elastic. In contrast, if the amplitude is large enough then a portion
of the cycle will remain plastic and £, will continue to increase. Also note from Fig. 9(c)
that when the amplitude is large enough the cycle is nearly all plastic and £, is nearly a
linear function of the number of cycles. Furthermore, we note that our predictions for brass
in Fig. 9(a) seem reasonable because they are qualitatively and quantitatively similar to the
experimental data for aluminium reported in Fig. 10(d) of Freudenthal and Ronay (1966).

From the experimental results of Swift (1947, Figs 10, 12) one observes that during
reverse loading the axial elongation decreases even during plastic response. This same effect
was obscrved by Harren er al. (1989) and attributed to texture development. Consequently,
it is expected that texture development will tend to decrease the magnitude of accumulated
axial elongation during cyclic torsional loading relative to the magnitudes predicted in
Fig. 9.

To demonstrate a connection between the accumulated axial elongation during cyclic
loading and axial elongation during monotonic loading we use (33) and the fact that q,
remains ncarly equal to one to approximate the accumulated plastic shear by

fp = J; leIZI d’- (57)

Figure 10 shows curves of E, versus 7, for monotonic loading (line with squares) and for
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four different amplitudes of twist (4 = +3°, §°, 7.5°, 20°). This figure shows clearly that the
accumulated axial elongation £, depends mainly on the accumulated plastic shear §,. In
view of the results in Fig. 4(b) and Fig. 10 we may conclude that texture effects become
significant for accumulated plastic strains greater than about 7, = 0.2, which indicates that
the predictions in Fig. 9(b) for large angles of twist are exaggerated.

Since the calculation based on the nonlinear theory requires considerable numerical
effort to iteratively solve the conditions (36a.b) and (39b) for a, b, ¢ for each time step,
calculation of the accumulated axial elongation for many cycles can be quite costly.
However, the result shown in Fig. 10 suggests that it is possible to estimate the value of £,
for a given number of cycles by estimating the value of 7, and determining £, from the
curve for monotonic loading. This procedure can cause considerable simplification if the
value of 7, is estimated by simulating the cyclic loading using the linear theory for which
the nontrivial components of the stress are given by (41), the flow rule (11) and evolution
equation of hardening (16b) are given by

Yo = r(}”‘}'p)- Bl: =, (p0E (25 sign {le}‘_ﬂtz}- (58a.b)

where with the help of (28). (B6) and the condition [, & 1, the rate of plastic dissipation
becomes

.. Fa} .
p,,()g == “7{* . ()9)
3u

8. CONCLUSION

Nonlincur constitutive equations for an clastically isotropic clastic-viscoplastic material
have been used to predict the second order effects that cause : axial clongation during pure
shear, normal stresses during simple shear, and accumulated axial elongation during cyclic
pure shear. Specific attention has been focused on the determination of the material con-
stants for OFE copper and 70:30 « brass. It has been shown that these constitutive equations
have the simplifying feature that the constants controlling the first order response can be
determined independently of those controlling the second order response. In particular the
rate of hardening was modified to obtain agreement with experimental data for large
deformation torsion. Although texture effects are significant for large deformations, the
results of this paper indicate that second order effects in the plastic region are driven by
second order elastic effects that cause small terms to appear in the flow rule which continue
to influence the accumulation of plastic deformation. Specifically, the value of the second
order clastic constant C,, which controls these second order effects, can be determined by
matching experimental data for axial elongation during torsion without axial constraint.
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APPENDIX A
In this appendix we record some formulae which are useful in developing approximate expressions for small
clastic distortion. First we use (19¢,d) to obtain an expression for g2+ 1 by noting that
=1 = det(=B)) =det Qg ~ 1) = — 1+ 20112 - 1) = {20 2g0)] +det (2g,). (AD
Solving (Al) for g2+ 1 we deduce that
o= 1= /140 g+ 4 det gd)], (A2)

where the minus sign is used to obtain the correct imit as g, approaches zero. Thus, for small elustic distortion
(A2) may be approximated by

L R (A3)
Next with the help of the Cayley - Humiltoa theorem we write
—B (B DB B D (B BB T =0, (Ad)
Now taking the inner product of (Ad) with B, we deduce that
B b= (B 1Y ~(B, BN (AS)

However, from (19d) we have
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B,”''1=3-2g-1, B "'B,7'=3-4g  l+g g. (A6)

so the expression (A5) may be rewritten in the form
B, 1= }[6—8g, - 1+4(g - )* ~4(g - g))]. (A7)
Similarly, taking the inner product of (A4) with B;? and using (AS) it may be shown that
Bl-l=—2(B.”"-D+{(B.7" - —(B.”'-B, ") (A8)
Consequently, with the help of (A3), (A6). (A7) and (A8) it can be shown that for small elastic distortion

3
B

B -1 = 3(1+(g ) >[I-ig gl BI-Ux3+8(g-g) (A9a,b.c)

APPENDIX B

With the help of (3c), (22) and (27) the deviatoric part D’ of the symmetric part D of the velocity gradient
L = FF~'is defined such that

= J(L+L"). D'=D-4D-Dl={F TCF"). (Bla.b)
It follows that the equivalent total strain rate § which is defined by
& = (iD-D)"3, (B2)
may be rewritten in the form
g = (ACC-CC ) (B3)
By analogy we define the cquivalent plastic strain rate £, by
& =(C '€, €, Co N, (B4)

where we have used the fact that C, is a pure measure of plastic distortion since it is unimodular (3d). Substituting
the flow rule (E1) into (B4) and using the definitions (19) it follows that

i 3 2 , , 12
TR P

Consequently, for small clastic distortions the approximations (23), (A9) and the definition (13) may be used to
deduce that

Io,
~ Mg g’V v —<, 6
& =g g " (B6)
Furthermore, it follows from (11), (19), (23) and (A9b) that for small elastic distortion

WoTCF T = ;r[(Bi I)I—B,“ '] =g = (%) T, (B7)

Also, when the stress rate 4, is significantly influenced by plastic deformation rate it follows from (21b) that for
small elastic distortion

¢, = C'+0(), (B8)
so that (B3) and (B4) yiceld
i T E,, (B9)
and (28) may be further approximated by
p0C = I}%a E,. (B10)
APPENDIX C

For simple tension in the e, direction of a Cartesian coordinate system the components x,, F,,, C,are given
by

x, = ak,, xy =bX,. Xy, =bX,. (Cla,b,c)
Fi,=a, Fyy=Fy=bh, all other F,, = 0, (Cld.e.N)
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C, =da’. C..=Cii =5, all other C,p = 0. (Clg. h.i)
where at) is specified and b 1s determined by the condition that the lateral stresses vansh
T..=T.=0 (C2
It follows from (C1) and the flow rule (11) that the Cartesian components C,,, of C_ are given by

Coiv=al.  Cpoo=Coon=la,  allother Gy = 0. (Cla.b.o)

where g, is determined by integrating the only independent equation of (114) subject to the initial condition (17a).
Furthermore. the Cartesian components (B, '), become

BNy, = (w0, B, .. =B, ) =aq, b all other (B, "), = 0. (C3a,b.¢)

APPENDIX D

[n this appendix we approximate the solution of the conditions (36) and the flow rule (11) and show that for
pure shear the axial elongation »— | remains small when the material constunt C, = — 2. To this end we follow
the work of Rubin (1988} on elastic response. neglect terms of order higher than 7 and approximate the quantitics
a.bocoag. b by

a=l+ayl, b= 1+hy. c=1+&L a, = 1+d. b, = 1+h3  (Dlabed.e)

Then, after considerable but straightforward algebra the conditions (36) become

a+bh+é = -1C " - m k), (D)

Ha
"
o

20, -1 o)
a fap:( ‘ >+‘.(a+ﬁw>. hh ( N ,)Hm»ﬁw), (Db, ¢y

T

and the three independent equations associited with the low rule (11) become
d o, JCr =1y, d . SCH+2Y . .
dp i) f( N )‘/;. gy i) 1 ( 3 )r;‘ 0+ 2d,50)7, = e (D3 b.c)

Multiplying (ID2¢) by 3/, using (D1b) and integrating (13b), subject to the imtial conditions 7. - Qand b - 1 = 0,

we deduce that
O+ 1., [feoe2N [,
h-1) ::[ ( '} ) +a+rh H"‘)J;'g + ( " > J‘ Mo de (D4)

Since the hardening tends to saturate (Fig. 2) the value of y, approaches o constant and the tirst terman (I4)
renains small for small elastic distortion. Specitically, from (41), Table 1, and Fig. 2¢1. b) near saturation
7o x L3 <10 " for copper and 6.2 x 10 for brass. However, the second term in (I4) continues to increase with
time unless the coetlicient vanishes (C, = —2), which explains the results shown in Fig, 3.



